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572 K. HORAI AND OTHERS

A new technique has been developed for the measurement of the thermal conductivity
of lunar core samples. According to this technique, the core sample is heated radiatively
from the outside at a known rate, the temperature is measured at the surface of the core-
tube, and the thermal conductivity of the sample is determined by comparing the
measured temperature with the theory. The technique conforms with the aims of
lunar sample preservation in that the sample remains intact after the measurements.
The solution, as obtained in this paper, of a thermal conduction equation for a com-
posite circular cylinder, with zero initial temperature and a constant heat-flux at its
outer boundary, provides a theoretical basis for the present technique. Because of
their mathematical similarity, the corresponding problems for a composite slab or
sphere were also solved and the solutions are presented for possible future application
to the thermal conductivity measurements. Testing demonstrated the feasibility of the
new technique. The thermal conductivity of a simulant lunar soil sample, as deter-
mined by the present technique under vacuum conditions at about 300 K for sample
densities of 1.47-1.67 gcm™3, is 2.05-2.65 x 103 W m~tK~', which compares favour-
ably with that of the same sample, 1.61-2.89 x 102 Wm— K~ at sample densities of
1.50-1.75 g cm~3, as measured under similar conditions by the standard line heat source
technique. We describe in detail the experimental apparatus construction and pro-
cedure; in particular, the number of precautions taken to preserve the samples from
disturbances and to improve the measurement results. This technique was success-
fully applied to the thermal conductivity measurement of two Apollo 17 drill-core
samples. The results, 1.9-4.9 x 10> W m~1K-, which is intermediate between the
values of thermal conductivity of the lunar regolith determined iz situ (0.9-1.3 %
102Wm~—K~-! and those of lunar soil samples measured in the laboratory under
simulated lunar surface conditions (0.8-2.5 x 10-3W m~1 K1) presents an important
clue to the understanding of heat transportation mechanisms in the lunar regolith.

INTRODUCGTION

The thermal conduction of composite solids has been studied by a number of investigators.
Jaeger (1941) solved the problem of a composite circular cylinder, of one material from radius
r = 0 to r = a and of another from r = @ to r = b, with zero initial temperature and the outer
surface 7 = 6 maintained at constant temperature, V;, for time ¢ > 0. The same composite
circular cylinder subject to zero initial temperature and a constant heat flux, —Fy, at r = b
for t > 01is treated in the present paper.

The solution of this problem can be applied to the thermal conductivity measurements of lunar
core samples. It is now widely recognized that the thermal conductivity of the lunar regolith,
as determined ¢z situ, is nearly an order of magnitude higher than that of the lunar soil, a major
constituent of the lunar regolith, as measured in the laboratory. The thermal conductivity of the
lunar regolith, at a depth of 35-235 cm below the lunar surface, as determined from temperature
measurements of Apollo 15 and 17 lunar heat flow experiments, is in the range of 0.9-1.3 x
102W m~* K- (Langseth et al. 1976); whereas the thermal conductivity of lunar soil samples
returned by Apollo 15, 17 and other missions, as measured in the laboratory under simulated
lunar surface conditions, ranges from 0.8 to 2.5x 103 Wm=1K-1 (Cremers 1972, 1975;
Cremers & Birkebak 1971; Cremers & Hsia 1973, 1974; Cremers et al. 1970).

The cause of the higher thermal conductivity of the lunar regolith as determined iz sifu has
not been clarified. It is known that the thermal conduction in a particulate material, such as the
lunar soil, under vacuum conditions is strongly influenced by its intergranular thermal contact.
It is conceivable that the state of the thermal contact between the grains of the lunar regolith
material, greatly enhanced by a mechanical process characteristic of the lunar surface, such as
meteoritic impacts, is the cause of the higher thermal conductivity of the lunar regolith as
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LUNAR CORE SAMPLE THERMAL CONDUCTIVITY 573

measured in situ. To test this hypothesis in a laboratory, it is essential that the lunar soil sample
used for the measurement maintain its i sifu intergranular thermal contact configuration as
closely as possible. Of the many returned lunar samples, only the drill and drive-tube core
samples offer any chance of preserving their original i situ heat transport properties because they
were recovered by a sampling tube penetrating to a depth of a few metres into the lunar regolith.
For this reason, an experimental study of the thermal conductivity of lunar core samples was
highly desirable. Severe constraints had to be followed to ensure that no mechanical disruption
of the sample occur during the measurements. In addition, excessive thermal and chemical
contamination of the samples could not be tolerated since the core samples were to be utilized
for many other laboratory investigations.

None of the conventional techniques for thermal conductivity measurements meets these
requirements, and a new method had to be developed to suit our purpose. The method chosen
was to heat the core sample from the outside at a known rate and measure the rise in temperature
at the surface of the core-tube. Because the temperature at the surface, increasing with time, is a
function of the thermal properties of both the core-tube and the sample, the thermal properties
of the sample can be estimated by comparing the measured temperature with the theory,
provided that the thermal properties of the core-tube are known. Thus it is not necessary to
extract the sample from the core-tube to make the measurements. Neither is it necessary to
insert a heater, or temperature sensor, into the sample within the core-tube, as would be required
if another method were applied. The sample remains intact after the measurements. The tem-
perature change in the sample can be kept to a minimum as long as the thermal conductivity
determination is possible with a reasonable precision. If the radiative method of heat transfer
is chosen, the core-tube will only be in mechanical contact with the sample holder and a sensor
attached to the core tube to measure the surface temperature, thereby greatly reducing the
possibility of disturbing the sample. It is considered the most favourable technique for thermal
conductivity measurements on lunar core samples.

A solution of the thermal conduction equation for a composite circular cylinder is required
for the present technique of thermal conductivity measurements. Here we will only indicate the
equations to be solved, the boundary and initial conditions to be satisfied and the solutions.
Solution derivations by the Laplace transform method will be outlined briefly in appendix A.
In deriving the solutions, we found it instructive to solve similar problems for a composite slab
and a composite sphere. The composite slab was treated strictly analogously to the composite
circular cylinder. The corresponding problem for a composite sphere was solved by changing the
variables by a simple transformation. For possible future applications of these problems to the
measurements of thermal conductivity, we have given the solutions in appendixes B and C.

THEORY
The general case

We are dealing with heat conduction in the composite circular cylinder of one material for
0 < 7 < a, and of another for a < r < b, with zero initial temperature and a constant heat flux
—F,atr = b for time ¢ > 0.

Let vy, &y, py, ¢, and «; = ky/p, ¢, be the temperature, thermal conductivity, density, specific
heat and thermal diffusivity in the inner cylinder 0 < r < @ and vy, £, P, ¢, and «, = ky/p, ¢y, the
corresponding quantities in the outer cylinder @ < r < & (figure 1).

45-2
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574 K. HORAI AND OTHERS

The equations to be solved are

%, 10, 10,
W W <r< 1
e g & 0srsae >0, (1)

0%, 13v, 10v,

ar2+;§~—;2€t-= , a<r<b, t>0, (2)

with the conditions kyOvy/Or = —Fy, r=158, t>0, (3)
V=0, t=a, t>0, (4)

k Qv /Or = k00, /0r, r=ua, t>0, (5)

o for=0, r=0, t>0, (6)

and 1 =00<7r<a), vy=0(a<g<r<b), t=0. (7)

TFicure 1. Thermal conduction in a composite circular cylinder. Inner cylinder: radius, e; thermal conductivity,
ky; density, py; specific heat, ¢;; thermal diffusivity, ;. Outer cylinder: radius, 4; thermal conductivity, £y;
density, p,; specific heat, ¢,; thermal diffusivity, «,. Initial temperature zero, A constant heat flux —F at
the outer boundary r = b for time ¢ > 0.

The solutions

_ L4124,
O [(vr s v
k(o a(2—a¥) @ b @{az(bhaz) b—at a2 b}
_/?1{?371 4K, +2/<2 lna}+/<2 4K, + 8k, 2K21 a
/i) @+ /o) =P
- et o) W) |, (s
s=1
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LUNAR CORE SAMPLE THERMAL CONDUCTIVITY 575

a

ST T A DY

vy = — 28, l Tfe) @+ (fis) (=)
ky {_ai_a2(b2——a2)+¢ib2 b}_'_/&{az(bz—tﬂ) A b:

In- ———In-
8k, 8k, 2k, @) Ky 4K, 8k, 2k, @

{(k1/11) @ + (ka/Ks) (07— a®)}?

+ 3 emasit hrae [Jy(aoy) (Jo(ran) Talanas) = o(rwer) Jy(arar)}

s=1

- (kl/Kk2> Jl(aa‘s) {JO(TKOLS) YO(aK“s) - YO(rKo‘s) Jo(aka‘s)}] T(“‘s)} ’ (9)

where Kk = \/(Kky/Kg), (10)

a® r*—a? a_2(k11 1)1 ¥

K1

W (o)t = fmabrwyo [ (ky/xy) b Jy(aces) {Jo(brars) Yo(arar) — Yo(brary) Jo(aker)}
(ks ) b Tu{aon) (afbron) Ya(awcny) — Yo(becr) Jy(axcey)}
+{(ky — ky) /x1} ka Jy(a;) {Jy (baxs) Yy (axers) — Y (brar) Jy(akoe)}
~ (ka/ K= ky /K1) a Jy(acty) {Jy(brar) Yo(axar,) — Yy (bray) Jyaxerg)}] (1)

and o, s = 1,2, ... are the positive roots of

Jolaa) {Jy(bker) Yy (aka) — Yy (bka) Jy(ako)}
= (ky/ks) Jy(ad) (Jy(bka) Yo(awar) = Yy (beor) Jplaxa)y  (12)

for a.
In the above, J,(x) and Y, (x) with z = 0 and 1 are the Bessel functions of the first kind and
the second kind with the real variable x in conformity with the usage as given by Watson (1966).

The same problem as above — a special case of ky = 0

The lunar core samples are contained in metal tubes. For example, the Apollo 15 type drill
core samples are contained in a tube of titanium alloy, Ti-6Al-4V with a thermal conductivity
of 7.4 Wm-1K-1at 300 K, or a thousand times more conductive than the lunar regolith material
at the same temperature. Therefore, if the wall of the tube is thin and the rate of heating not
excessive, resulting in a small temperature difference across the wall, the assumption that
k, = o0 is justified and the solution obtained below can be used in experimental data analyses.

The solution to this problem is derived by taking a limit of £, — o0 in the foregoing formulas.
However, it is equally easily obtained by solving the following corresponding equation

Gt e T T 0TS 120 1

with the conditions

2nakl%vr—1+ n(b%— a?) 02,02% = —2nbF,, r=a, t>0, (14)
o for=0, r=0, t>0, (15)
and 1, =0(0<r<a), t=0. (16)

The second term on the left hand side of equation (14) represents the isothermal heating of the
outer cylinder.


http://rsta.royalsocietypublishing.org/

JA

o \

p &

THE ROYAL A

PHILOSOPHICAL
TRANSACTIONS

PHILOSOPHICAL
TRANSACTIONS

SOCIETY

’_l‘::
>~
O H
~ =
k= O
= O
= uw

OF

OF

Downloaded from rsta.royalsocietypublishing.org

576 K. HORAI AND OTHERS
The solution is
v, = —2bF ( t+(r2_a2)/4’<1 (a4/8’<1> ‘1P
! *\(62~a) cypy +aPerpy {(5%— @) ¢y + a%, p P
= 3 e (i) a)} P (), (1)
2 42
where V(o) = o (102 ) L2LLE gy oy, 1.0t ) (18)
1P1

and (s = 1,2, ...) are the positive roots of

3(0%—a®) ¢y pp

o aody(aa) +Jy(aa) = 0 (19)

for a. For the temperature in a < r < b, we obtain from equation (17)

Uy = vl]r=a

: (@ /x)crp ¢ ctnie)
= -9 F 1/°1/M1 _ Ky @t L 2
b 0((52_02) "2P2+‘1251P1+{(b2—42) €3 Pz + a6y Py} s§1€ ), (20)

which is constant as a function of 7in a < r < b.

The properties of the solution

We wish to study in detail the properties of solution (20) because it will be used in experimental
data analyses. Firstly, to compute v, as a function of time ¢, it is necessary to evaluate the s
from equation (19). Since (5% —a?) ¢, py/a?c, p; > 0, equation (19) can have a root only in an
interval in which Ji(x) and J;(x) have opposite signs. As an elementary theory of Bessel function
shows, the signs of Jy(x) and Ji(x) are opposite in the intervals j, ,, < x < j; ,, where j, , and
J1,» are the nth positive roots of Jy(x) and J;(x). In all of these intervals, J;(x)/J,(x) is a mono-
tonically increasing function ranging from —oo to 0. Hence equation (19) has a single solution

in each of these intervals
Jon < Ay <Jp1n B=1,2... (21)

Since jy,,, 5 and jy ,, s are known (see, for example, Watson (1966) in which the values of j, ,, s
and j, ,, 5 are tabulated from z = 1 to 40), the computation of «,, s are greatly facilitated by the
use of relation (21).

The computation of v, by equation (20) involves the evaluation of the series that must be
terminated after a certain number of terms so that the remainder becomes negligibly small
compared with the partial sum. The degree of convergence can be estimated in the following
way. Since v, = 0 for £ = 0, by putting ¢ = 0 in equation (20) we obtain the relation

(a*/8ky) 61py >
> {(6® —a®) ¢y py + %y py}? s§1 Pla), (22)
by use of which we can choose the number of terms N that makes
w© o N
% V) v - - £ v) [s<e (23)
s=N+1 s=1 s=1

where e < 1is a desired criterion. If we note that, for ¢ > 0,

1>e @t and e ™%t > ewdnt (5=1,2...), (24)
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LUNAR CORE SAMPLE THERMAL CONDUCTIVITY 577

it can be shown easily that, for the value of N as chosen above, a relation

0 0
[ 3 v [ § emawa) <o (25)
s=N+1 s=1

also holds.

So far, we have discussed the solutions obtained when the heat flux across the boundary is
constant as a function of time. In order to deal with the experimental data, it is desirable to
provide a solution in which the heat flux across the boundary varies with time. A rigorous
solution when the heat flux across the boundary is an arbitrary function of time, — F (1), is beyond

the scope of this paper. Instead, we will seek an approximate solution useful in data analyses.

F -
_}7:7‘_1/4
-

1

t it ot £ =

max

Ficure 2. Continuous and slowly varying heat input, — F (7), as a function of time 7, approximated
by a stepwise varying function, —F, (t;-; S 7 < 8;),7=1,2...,7 ..

If — F(7) is a slowly varying function of time 7, it can be approximated by a stepwise varying
function

1 t . | .

~F, = f {=F(n)}dr, (i=1,2,...,00.x), (26)
bi—tiadtia

that is constant in the interval between #;,_; and ¢; (figure 2). By writing the solution given in

equation (20) by v,(¢, — F,) to denote the heating effect of a constant heat flux, — F,, after time ¢,

the effect of heating due to the solitary heat flux

0 0<7<t;,),
—F(r)={-F, (<7<,
0 (h<T<t),

is given by vy(¢ —¢;_y, — F;) —vy(¢t —t;, — F;) by virtue of the principle of superposition of solutions
for the linear differential equation. According to the same principle, the solution for the stepwise
varying heat flux —F (1) = —F, (t;_; S T < t;),% = 1,2, ..., ty,x is obtained as

Uy = m_zt {va(t =g, —F)) —wp(t = b5, — Fy)}

{max t.—1t. o
=—2b F[ A — 3 ekt (exiaftiog . ekiadts) Py ] 27
¢§1 Y1 (62— a?) ¢y po + A%, pq s§1 ( ) Pas) |, (27)

where ¢ = ¢,

Tmax®
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578 K. HORAT AND OTHERS

EXPERIMENTAL METHOD

The theory developed in the preceding section was applied to thermal conductivity measure-
ments of lunar core samples. Experiments were conducted to put the theory into practice with
two objectives: (1) to demonstrate the feasibility of the present measurment technique, and
(2) to insure that the measuring apparatus complied with N.A.S.A.’s criteria for the handling
of lunar samples returned by Apollo missions. We will now describe briefly the methods and
results of these test measurements.

Apparatus

Figure 3 illustrates the experimental arrangement for the measurements of Apollo 15 type
drill core samples. The sample’s core-tube is 42.54cm long, 2.04cm in inner diameter and
2.33 cm outer diameter. The heater is a hollow circular cylinder, concentric to the core-tube,
30.23 cm long with inner and outer diameters of 3.56 cm and 4.92 cm respectively. The heater
position is adjustable to enable a determination of the thermal conductivity to be made at
several locations along the length of the core tube. Adjustment of the heater position is made by
the use of a screw rod connected to the mechanical feedthrough attached to the flange of the
vacuum chamber. The heater temperature is raised by passing an electric d.c. current through
the heating wire wound on the core of the heater. For temperature measurements, copper—
constantan thermocouples attached to the surfaces of the heater and core tube are used.

The choice of materials constituting the experimental apparatus is restricted. To avoid a
possible chemical contamination of the lunar material, the apparatus parts, as shown in figure 3,
having a possible direct contact with the lunar sample, are made of materials such as aluminium,
stainless steel and Teflon, admissible by N.A.S.A. standards. The use of a copper—constantan
thermocouple is admitted provided that the wire be Teflon coated, except close to a junction.

An accurate temperature measurement at the heater and core-tube surfaces is essential to
determine the thermal conductivity by the present technique. For purposes of lunar sample
preservation, the use of an organic heat sink compound as a means of improving the thermal
contact is prohibited. For core-tube surface temperature measurements, use is made of a copper
circular disk, 1.2 mm thick and 4 mm in diameter, with a hole drilled from the side surface of the
disk to the centre where the junction of no. 30 thermocouple wires has been inserted. The disk
is pressed against the axial direction so that the thermocouple junction is held tightly by the
collapsed hole. The tool has been so designed that, by pressing it, one of the disk’s flat surfaces
acquires the same curvature as that of the core-tube’s round surface. The disk is attached to
the core-tube by a polyimide band, 6 mm wide and 55 mm long, placed on the disk and en-
circling the core-tube circumference with its ends tied by stainless steel spiral springs to ensure
contact between disk and core-tube by tension of the springs.

A similar device is used to measure the temperature at the heater’s surface. A rectangular
parallelepiped piece of copper, 1.2mm x 3.5 mm x 9mm, with a hole containing the thermo-
couple junction drilled on one of the two end surfaces, is embedded into a groove, 1.2 mm deep
and 3.5 mm wide, cut on the inner surface of the heater along its length, and tightened to the
heater by a stainless steel screw. As the thermocouple junction is thus connected to the heater
by thermally conductive metals, the junction remains isothermal to the heater’s inner surface.
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LUNAR CORE SAMPLE THERMAL CONDUCTIVITY 579

Heat transfer from the heater to the core-tube

A formula for the radiative heat transfer from the heater to the core-tube, as a function of
heater and core-tube surface temperatures, has been described in theory (see, for example,
Grober ¢t al. 1961). For a system of infinitely long concentric circular cylinders, the radiative
heat exchange between the inner cylinder (radius r,, surface temperature 7; and surface thermal

1.
Uy
H
Ly
—/
/
sl
1
)e
C
Le
0
| Ly

46

////Z///

7

Ficure 4. Radiative thermal exchange between con-

centric circular cylinders of infinite axial extent.
Radius of inner cylinder, r;; surface temperature, 77;
surface thermal emissivity, 6;. Inner radius of outer
cylinder, 7,; surface temperature, T,; surface thermal
emissivity, €,.

Frcure 3. Experimental arrangement for the Apollo 15

type drill core sample thermal conductivity measure-
ment. Left half: outside view. Right half: section
through the core-tube axis. Ty, core-tube, filled with the
sample; Ty, empty core-tube; C, core-tube cap (Tef-
lon); P, core-tube plug (Teflon); H, heater, core
(anodized aluminium 6061-T6), jacket (aluminium
6061-T6), heating wire (Teflon coated constantan);
Uy, upper heater holder (Teflon); Ly, lower heater
holder (Teflon); S, screw rod, or driving shaft (stain-
less steel 300 SST); R, supporting rods (stainless steel
300 SST); Uy, upper sample holder plate (anodized
aluminium 6061-T6); Uy, upper sample holder (Tef-
lon); Ly, lower sample holder plate (anodized alumin-
ium 6061-T6); Ly, lower sample holder (Teflon); Ly,
lower supporting ring (anodized aluminium 6061-T6);
M, direct drive motion (mechanical) feedthrough; E,
electrical feedthrough; V, vacuum chamber (stain-
less steel 300 SST); F, vacuum chamber flange (stainless
steel 300 SST). The thermocouple wires are not shown.

Vol. 293. A
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580 K. HORAI AND OTHERS

emissivity ¢;) and the outer cylinder (radius r,, surface temperature T, and surface thermal
emissivity €,) per unit time, per unit length of the cylindrical system is given by

_ Ay on(T3-T1)
C e+ (4,/4,) (1/6,—1)°

where oy is the Stefan-Boltzman constant; 4, = 2nr, and 4, = 2nr, are the surface areas, per
unit length, of the inner and outer cylinders (figure 4).

In measuring the thermal conductivity of lunar core samples, it is desirable to keep the
variation in sample temperatures as small as possible. Equation (28) can be simplified for small
temperature variations. If 7 is the initial equilibrium temperature and the variations in the
heater and core tube surface temperatures are T = T+ 87, and T} = T+ 87, where 877 < T,
and 87, < T, respectively, then equation (28) can be approximated

Q

(28)

_ 4A10'b Tg
/e +(A4,/45) (1/e,—1)

Q (3T, —T). (29)

In this expression, the rate of heat transfer by radiation from the heater to the core-tube is
proportional to the difference in surface temperatures between the heater and the core-tube,
and the coefficient of proportionality is a constant.

The use of equation (29) for the analysis of experimental data, however, may not be adequate
for the following reasons. First of all, the surface thermal emissivity appearing in equation (29)
is not a material constant, but is controlled strongly by the surface finish. Moreover, the thermal
emissivity of a curved surface is usually difficult to measure. Accordingly, the expression may
not be accurate if the coeflicient is calculated from experimentally determined e, and ¢,. Secondly,
the Apollo 15 type drill core-tube has a spiral ridge on its outer surface, whose effect on the
thermal radiative exchange area is too complex to be expressed in a mathematically rigorous
form. Therefore, equation (29) needs to be modified if this effect is to be taken into account.
Thirdly, neither the heater nor the core-tube are infinitely long as assumed in the derivation of
equation (28), but have a finite length. In our experimental arrangement, the effect of finite
axial extent may be important in the heater and core-tube system. We decided, therefore, to
use an empirical formula to evaluate the heat transfer from the heater to the core-tube. As will
be shown below, the theoretical expression (29) is useful in determining the functional form of
the empirical formula.

The empirical formula was derived experimentally in the following way. An empty core-tube
was placed in the core-sample position and the temperature variation due to heating was
measured as a function of time at the surfaces of both the heater and core-tube. Since the core-tube
is made of a thermally conductive alloy, the temperature difference across the core-tube wall can
be assumed to be negligible unless the heating rate is exceedingly high. In that case, because the
core-tube is empty, the heat inflow rate into the core-tube can be estimated from the increase
in core-tube surface temperature as

Q = Cd(8Ty)/d, (30)

where C = n(b% —a?) ¢, p, is the heat capacity, per unit length of the core tube.

The above expression is to be equated with the empirical formula describing the heat inflow
into the core-tube, the leading term of which is proportional to 87}, — 87}, as formula (29) suggests.
Experimental data analysisshowed, however, that the measured temperaturesare moreadequately
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LUNAR CORE SAMPLE THERMAL CONDUCTIVITY 581

represented by an empirical formula if an additional term, proportional to 877, is included

(figure 5). Thus,
Q = n(8T,—dT;) +vdTy, (31)

where 7 and v are constants. If equations (30) and (31) are combined and integrated with respect
to time the result will be

CSTy(t) = 7 f :{s:/;(f) STy ()} dr +v f : §T() dr, (32)

which enables 7 and v to be determined from temperatures 877(¢) and 87,(¢) measured as a
function of time ¢.

20 T T T 1 T T I T B T

Ty

15—

ST/K
5
]

|
0 15 30 45 60
¢/min

FIGURE 5. Variation of temperature measured as a function of time ¢, at the surfaces of the heater (87}) and the
core-tube (87) for a determination of the heat transmission characteristics. Heater, Al, h.a.; core-tube, (3)
(see Table 1). Heater energized by a 27.5 V d.c. Measurement made at thermocouple position L,. The digitized
records are smoothed. Solid and dashed lines represent the theoretical best fit to the measured core-tube
surface temperature, based, respectively, on formula (31) with and without the second term, i.e.
Q = (8T, —8Ty) +v8Ty;——=, Q = (8T, —3T").

2

The heating element currently in use for the Apollo 15 type drill-core sample measurements
is composed of a coil of no. 30 Teflon coated constantan wire, wound uniformly over the core of the
heater. The heater’s total electrical resistance is 490£2. Before the temperature measurements,
the experimental heater and core-tube system was installed in a vacuum chamber and the
atmospheric pressure within the chamber reduced to 10~*Pa. This is to suppress gaseous
convective motion which, if operative, will interfere with the radiative heat transfer. The
heating element is energized by a constant d.c. voltage, either 25.0 or 27.5V, for 60 min. The
temperatures at the core-tube and heater surfaces are digitized and recorded at intervals of 1 min.
These discrete values of temperature are used to determine % and v according to equation (32)

by the least squares method.
46-2
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582 K. HORAI AND OTHERS

During the development of the present thermal conductivity measurement technique, the
heater’s design was changed several times to improve the heat transmission characteristics
between the heater and the core-tube. The reconstruction of the heater was also necessitated from
the standpoint of lunar sample preservation. The heater, as originally constructed, was of stain-
less steel with its inner surface covered by a glossy chromic acid coating. The surface finish was
later changed to a black nickel coating to render it radiatively diffuse with its thermal emissivity
close to unity. Subsequently, to avoid exposing lunar material to the nickel compound, the heater
was rebuilt from aluminium with a surface hard anodized by the use of stainless steel electrodes.
The constants 4 and » of equation (31) were determined for each of these heaters, as shown in
table 1, because they are necessary for the thermal conductivity test measurement.

TABLE 1. DETERMINATION OF HEAT TRANSMISSION GHARACGTERISTICS FOR APOLLO 15 TYPE DRILL
CORE TUBES AND TEST MEASUREMENTS OF THE THERMAL CONDUCTIVITY OF AN AproLro 12
SIMULANT LUNAR SOIL SAMPLE

heat transmission characteristics numberof sample number of
- A \ measure- bulk thermal measure-
core- i v ments, density conductivity ments,
heatert  tubel (102 Wm-1K-1) n’ p1/(gem=3) £ /(103 Wm—1K-1) n
s.5.C.a. (1) 27.0+1.2 - (10.3 + 2.0) 10 1.47 2.05+ 0.80 7
ssbn.  (2) 23.6+1.7  —(14.3+ 1.5) 13 1.58 2.29 + 0.86 6
ssbo (2 33.0+3.7  —(17.5+2.0) 12 1.67 2.14+0.53 3
ss.bn. (1) 44.9§ —16.28 — 1.57 2.65 + 0.55 10
AlLha.  (3) 38.0+54  —(10.3+2.0) 24 1.50 2.13+0.72 21

+ s.s.c.a.: stainless steel, chromic acid coating, inner radius 7, = 1.53 cm, length / = 15.24 cm. s.s.b.n.: stainless
steel, black nickel coating, r, = 1.53cm, [/ = 15.24cm. Al,h.a.: aluminium, hard anodized with stainless steel
electrode, 7, = 1.78 cm, [ = 20.32 cm.

1 Apollo 15 type drill core tube, outer radius & = 1.165 cm, inner radius a = 1.020cm. (1), length [ = 38.74 cm,
weight w = 161.9g, surface thermal emissivity ¢; = 0.663; (2), [ = 42.564cm, w = 193.4g, ¢, = 0.465; (3), I =
42.54 cm, w = 195.5g, ¢; = 0.634; (4) (not used for thermal conductivity test measurements), /= 38.74cm, w =
170.2g, ¢; = 0.652.

§ Estimated from surface thermal emissivity data.

The experimentally determined % can be compared with the theoretically expected coefficient
in equation (29). Surface thermal emissivity data are available for the heater and the core tube
used in the test thermal conductivity measurement. Thermal emissivity of analuminiumspecimen,
with a flat surface finished by the same treatment as the heater, was measured by the Gier
Dunkle double black body infrared reflectometer model DB100 giving a result of €, = 0.934,
whereas that of the core-tube measured by the same instrument was ¢; = 0.634. When combined
with the following parameters: 7, = 1.165cm, 7, = 1.778cm, 7, = 300K and op = 5.66961 x
10-*Wm—2K 4 the constant becomes equal to 2.93 x 101 W m~t K-, As indicated in table 1,
the experimentally determined value of 7 is more than 359, higher than the theoretically
expected value. This discrepancy may be due in part to the uncertain determination of thermal
emissivity on the curved surface of the core tube and in part to the theory, which does not take
into account the effect of the core-tube’s spiral ridge on the radiative heat exchange between
the heater and the core-tube.

Numerical simulation of the experiment

The values of v listed in table 1 are all negative, indicating that the second term in empirical
formula (31) represents the loss of heat to the axial direction of the core-tube. There are two


http://rsta.royalsocietypublishing.org/

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

A A

OF

PHILOSOPHICAL
TRANSACTIONS

>~
O H
~ =
k= O
= O
= uw

OF

Downloaded from rsta.royalsocietypublishing.org

LUNAR CORE SAMPLE THERMAL CONDUCTIVITY 583

mechanisms to account for the axial dissipation of heat: (1) thermal conduction through the
wall of the metallic core-tube, and (2) radiation from the surface of the core-tube. The latter
consists of two components, one from the outer surface of the core-tube into the solid angles not
subtended by the inner wall of the heater; and the other from the inner surface of the empty
core-tube towards the upper and lower ends of the core-tube. In the latter component of radiative
heat transfer, the path of a thermal radiative ray, emitted from the inner surface of the core-tube
is not straightforward, but subject to a complex reverberation. It is obvious that this mode of
heat transfer, effective when the core-tube is empty, is effectively suppressed when the core-tube
is filled with a radiatively opaque sample. The applicability of formula (31) to the thermal
conductivity measurements depends, therefore, on the evaluation of this effect. The coefficients
in the formula derived from the measurement on an empty core-tube are valid for a sample
filled core-tube, only when the effect is negligible.

heater

bottom z cm top
¥ ¥ g ¥ ¥ £
L, L, M, M U T
core—tube

Ficure 6. Numerical simulation of an empty core-tube experiment. Calculated temperatures are shown with
temperature measurement data for a determination of the heat transmission characteristics. Open symbols:
measured heater surface temperatures. Closed symbols: measured core tube surface temperatures. Thin
straight lines: theoretical heater surface temperatures equal to the temperatures measured at the middle of the
heater. Bold curved lines: calculated core-tube surface temperatures. Thin curved lines: core tube surface
temperature gradient in the direction of the core tube’s axis.

Evaluation of the effect of axial heat loss was made by a numerical method. Solving the heat
transfer equation numerically, with the aid of a finite difference technique, simulated the
experiment of heating an empty core-tube. To compare with the numerical result, temperature
measurements were made by using all thermocouples attached to the heater and core-tube with
the same relative position of the heater to the core-tube assumed in the simulation. The data
showed that the temperatures, as a function of time measured on the inner surface of the heater,
were nearly identical regardless of the position of the thermocouples. The heater’s inner surface
was therefore assumed to be isothermal and equal to the temperature measured at the middle
of the heater. Thermal radiation was assumed to be the mode of heat exchange between the
heater and the core-tube while thermal conduction along the core-tube and radiation outside
and inside the core-tube were the modes of heat dissipation. The necessary values of thermal
emissivity for the heater and the core-tube’s outer surface were taken from direct measurement
data by an infrared reflectometer. The core-tube’s inner surface was assumed to have the same
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584 K. HORAI AND OTHERS

thermal emissivity as its outer surface. The heater and core-tube were approximated by a set
of concentric isothermal annuli of axial length Az < 1cm, and the temperature development
with time, for each of the annuli representing the core-tube, was calculated explicitly for the time
interval At = 5s. The solution of the finite difference equation was stable for the choices of space
and time intervals as indicated above.

Figure 6 summarizes the results of the calculation. The calculated core-tube temperatures,
together with the measured temperatures, are shown for 15, 30, 45 and 60 min after the start of
heating. The generally excellent agreement between calculation and measurement indicates
that the numerical modelling of the experiment was appropriate. Another calculation was made
in which the core-tube’s inner surface thermal emissivity was assumed to be zero, corresponding
to the assumption that the radiative heat transfer inside the core-tube is totally suppressed. A
comparison of the results showed that the calculated temperature at the core-tube’s surface was
higher for the latter, but the difference never exceeded 1 9,, indicating that the effect of radiative
heat transfer inside the core-tube contributes no more than 19, to the heat loss in the axial
direction of the core-tube. It can be concluded that no substantial error will be incurred in apply-
ing expression (31), with numerical coefficients determined from an empty core-tube measure-
ment, to the thermal conductivity determination of a sample filled core-tube.

Other important experimental features can be seen in figure 6. To illustrate the amount of
heat loss in the axial direction of the core-tube, the gradient of the core-tube surface temperature
in the direction of its axis is indicated on the figure. It is remarkable that the locus of maximum
heat loss coincides with the heater’s position. Although only the lower half of the core-tube
temperature distribution is shown in the figure, the same is true of the upper half. Heat dis-
sipation in the axial direction of the core-tube becomes null at the middle of the heater because
the core-tube’s temperature distribution is symmetrical, with the plane of symmetry passing
through the heater’s centre and is perpendicular to the core-tube’s axis.

The thermal conduction equation necessary for the experiment was solved for a composite
circular cylinder of infinite axial extent. However, the solution is also valid for a finite axial
extent, |z| < &, provided that the boundaries, z = + & are insulating so that the direction of
axially symmetric heat flow in the region |z| < % is confined in a plane perpendicular to the
cylinder’s axis. The numerical simulation of the experiment showed, however, that the locus of
the null heat loss is restricted to a point at the middle of the heater, indicating that the two
dimensional thermal conduction assumption holds only for the narrow section of the core-tube
containing the plane of symmetry. Outside the section, the heat flow is no longer confined within
a plane perpendicular to the core-tube’s axis but has a component parallel to it. The situation
will be the same when the core-tube is filled with a sample, because the temperature distribution
in the sample must also be symmetrical with respect to the same plane of symmetry unless the
sample material is inhomogeneous or anisotropic.

In the present experimental arrangement, to measure thermal conductivity, it is important
to place the centre of the heater precisely at the spot of thermal conductivity determination
where the core-tube temperature sensor is attached. If the core-tube surface temperature is
measured away from the middle of the heater, the component of heat flow, parallel to the
direction of the core-tube’s axis, will not be negligible, thereby invalidating the thermal con-
ductivity determination theory because it assumes a thermal conduction in a cylindrical system
with its flow line confined within a plane perpendicular to the cylindrical axis. Similarly, an
empty core-tube measurement must be made with the heater centred at the very spot of the
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LUNAR CORE SAMPLE THERMAL CONDUCTIVITY 585

core-tube’s surface temperature measurement. If there is a component of heat flow parallel to
the core-tube axis at the spot where the core-tube surface temperature is measured, the empirical
formula (31), with numerical coefficients thus determined, will not give a correct amount of heat
inflow into the core-tube as the theory requires.

THERMAL CONDUCTIVITY TEST MEASUREMENT

Since the present technique of thermal conductivity measurement is new, we considered it
necessary to demonstrate its feasibility by making a test measurement. The core-tubes whose
heat transmission characteristics had been determined, were filled with a terrestrial analogue
of the lunar material and its thermal conductivity was measured by using the present technique.
This result was compared with the conductivity of the same material measured by another
technique considered standard.

TABLE 2. GRAIN SIZE DISTRIBUTION OF AN APOLLO 12 SIMULANT LUNAR SOIL SAMPLE

percentage weight

material grain size range/mm fraction
Knippa basalt 1.68-(5.0) 5
0.297-1.68 16
0.149-0.297 13
0.074-0.149 16
Berkeley basalt 0.050-0.074 7.2
0.027-0.050 13.4
0.016-0.027 13.8
0.0085-0.016 7.5
0.0044-0.0085 4.4
(0.0010)-0.0044 3.7
Sample

The terrestrial analogue of the lunar material used for this study is an Apollo 12 simulant
lunar soil, prepared by W. D. Carrier of the Johnson Space Center, N.A.S.A. This consists of a
mixture of powdered Berkeley and Knippa basalts with grain size distribution (table 2) similar
to that of Apollo 12 lunar soil samples (Scott ef al. 1971). It has been shown that the grain size
distributions of soil samples from subsequent Apollo missions are not significantly different from
those of the Apollo 12 samples (Mitchell et al. 1972; Carrier e/ al. 1973). Accordingly, the use of
this particular terrestrial analogue is adequate in a lunar sample simulation study.

Reduction of the sample’s interstitial gaseous pressure

The thermal conductivity of a particulate material, such as the lunar soil simulant, is known
to decrease substantially as the pressure of gas filling the interstices of the material is reduced
from 1.01 x 105Pa to 0.1 Pa. Below 0.1 Pa however, it becomes insensitive to the change of the
interstitial gaseous pressure (Wechsler & Glaser 1965 ). Accordingly, to simulate the lunar surface
condition, the sample’s interstitial gaseous pressure must be kept below 0.1Pa during the
measurement. It was necessary to suppress the convective motion of the gas outside the core-tube
to keep it from interfering with the radiative heat transfer from the heater to the core-tube. The
gaseous pressure inside the core tube needs also to be kept as low as the outside.
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The Apollo 15 type drill-core samples are sealed at their lower end by a cap and at the upper
end by a plug inserted into the core-tube. The plug is a piece of Teflon fitting tightly inside the
inner wall of the core-tube, thereby rendering it airtight. To facilitate the reduction of gaseous
pressure within the core-tube, permission was obtained from N.A.S.A.’s Lunar Sample Curator
to replace the plug before the thermal conductivity measurement. This new plug, made of Teflon,
has the same outer dimensions as the old one, but has a hole 10 mm in diameter along its axis
serving as a conduit connecting the inside of the core-tube to the outside. To the plug’s lower
end, under the hole, is affixed a Bendix poroplate stainless steel screen with a mesh of 5um. The
lunar regolith material contains particles finer than 5pm (Gold e al. 1971; GOrz et al. 1972;
King et al. 1972). Since, however, the mass fraction of these fine particles seldom exceeds 19,
of the total material, the use of the screen is effective in preventing any significant leakage of the
lunar soil particles.

The same cap and plug, prepared for the lunar sample study, were used during the test
measurement. Great care was taken to control the rate of reducing the gaseous pressure in the
chamber containing the core-tube filled with test material. A rapid change in gaseous pressure
outside the core-tube should induce a large gradient in gaseous pressure within the core-tube,
which could result in a catastrophic dislocation of the sample as well as a leakage of particles
finer than the screen mesh.

Experimental pumping was repeated to determine an optimum pumping rate. In one experi-
ment, a sample of fluorescent CaWO,, powdered finer than 2pm, was placed on top of the lunar
simulant material to see if the selected pumping rate caused any significant diffusion of the
material. A methyl cellulose millipore filter with a pore size of 0.22um was placed on the down-
stream side of the screen, and, after the experiment, examined by electron microscope to detect
any CaWO, particles. At the same time, the upper portion of the core-tube in the vicinity of the
plug was scanned by radiation from a long-wave ultraviolet source to reveal any trace of fluor-
escence. In another experiment, with the use of powdered silica glass, artificial layers were
embedded in the lunar simulant soil sample and the sample examined by X-rays taken before
and after the experiments to indicate any disturbances incurred in the artificial stratification.
Later, the same experiment was repeated with a glass tube of the same length and inner diameter
as the lunar core-tube to visually examine the artificial strata for possible disturbances. On the
basis of these experiments, we conclude that, providing the rate of pumping does not exceed
2Pas~! while the gas pressure in the vacuum chamber is reduced from 1.01 x 10°Pa to less
than 102 Pa, the texture of the lunar sample in the core-tube will remain unaltered. We also
inferred that the same rate must be maintained when the pressure in the chamber is restored
from less than 10% Pa to 1.01 x 10° Pa after the thermal conductivity measurement.

The above pumping criteria were adopted for the thermal conductivity test measurements.
A needle valve is essential in our vacuum equipment to maintain an extremely slow rate of
pumping and its fine adjustment. A brief description is appropriate here with regard to the
vacuum equipment. Our original vacuum equipment consisted of an oil sealed rotary pump
and a diffusion pump. These were later replaced by a combination of sorption and sputter ion
pumps to avoid an oil leakage into the vacuum chamber to protect the lunar material against
chemical contamination. For this reason, stainless steel tubings and bellows were used in place
of copper and rubber tubings, and aluminium gaskets instead of copper in our oil-less vacuum
apparatus. A high vacuum is easily produced with the apparatus currently in use. The air
pressure in the vacuum chamber stays around 10~%Pa during the determination of heat trans-
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mission characteristics but is a little higher, 10-3-10—4Pa, during the test measurement of the
thermal conductivity, owing to the degassing of the sample material.

Thermal conductivity determination

The procedure followed during thermal conductivity measurements is the same as for the
determination of heat transmission characteristics. From the discrete values of measured tem-
peratures 875(¢;) and 875(4;) (j = 1,2, ...,/max), the heat inflow into the core-tube (%)) is cal-
culated from formula (31) in which the numerical coefficients, 7 and v, have been determined
by a measurement on the empty core-tube. The theoretical temperature at the surface of the
core-tube ,(#;) is, then, computed according to formula (27), where it will be recalled that
—2bnF; = }(Q(#;) +Q(t;1)) and ip,, =j. Of the constants appearing in equation (27), the
inner and outer radii of the core-tube are known, as well as the density (p, = 4.43gcm™3) and
the specific heat (¢, = 0.530J g~ K-! at 300 K) for the titanium alloy Ti-6Al-4V of which the
Apolio 15 type drill core-tube is made. For the Apollo 12 simulant lunar soil sample, a specific
heat, ¢; = 0.715 ] g~ K1, was assumed and the bulk density p, was calculated from the sample’s
mass and volume for each experiment (table 1). The theoretical core-tube surface temperature
vy(2;) is, then, a function of the sample’s thermal conductivity. The trial £, was adjusted by an
electronic computer to minimize the sum of the squared residuals between the calculated and
the measured temperatures.

;g: {0a(t;) — 8T (t;)}* = min. (33)

The results are shown in table 1.

TABLE 3. THERMAL CONDUCTIVITY OF AN APOLLO 12 SIMULANT LUNAR SOIL SAMPLE MEASURED
BY THE DIFFERENTIAL LINE HEAT SOURCE TECHNIQUE UNDER AN INTERSTITIAL GASEOUS PRESSURE

oF 10-5 Pa
Original data (Fountain & West 1975) interpolated to 300 K.
sample bulk density/(gcm—3) thermal conductivity /(103 Wm~-1K-1)
1.25 1.58
1.50 1.61
1.75 2.89
1.80 5.08

The standard values of thermal conductivity were determined at the Marshall Space Flight
Center, N.A.S.A. (Fountain & West 1975) by means of a differential line heat source technique
developed by Scott et al. (1973). The original study gives the thermal conductivity of Apollo 12
simulant soil samples as a function of the bulk density and temperature under a vacuum of 10-5
Pa. The values interpolated at 300 K are reproduced in table 3. The tables shows that the con-
ductivity, determined by the line heat source technique, varies from 1.61 t0 2.89 x 103 Wm-1K-1
as the sample’s density increases from 1.50 to 1.75 g cm~3. This agrees favourably with our
measurements of 2.05-2.65 x 10-3Wm=! K-for a density ranging from 1.47 to 1.67 gcm=3,
demonstrating the validity of the new technique.

Figure 7 is an example of a temperature record. In this particular measurement, the heater
was energized by a d.c. voltage of 27.5V. The rate of heat generation per unit length of the
heater is, therefore, 0.921 Wm™". For this rate of heat generation, the increases of the heater
and the core-tube surface temperatures are, respectively, 16.5 and 10.8K, after 60min of

47 Vol. 293. A
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588 K. HORAI AND OTHERS

heating. This implies that the temperature disturbance to the sample, due to the thermal con-
ductivity measurement, was kept within 11 K. Unless the thermal conductivity of lunar core
samples is substantially lower than that of the Apollo 12 simulant lunar soil, the maximum
temperature disturbance to the sample, by the present thermal conductivity technique, will
remain the same order of magnitude. This is one of the advantages of the technique fitting the
requirements of lunar sample preservation.

20 T T T T T T T T T
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Ficure 7. Temperature variation measured as a function of time £, at the heater surfaces (§7,) and the core-tube
(8T,) for a determination of the thermal conductivity of an Apollo 12 simulant lunar soil sample with a bulk
density of 1.50 g cm~3contained in test core-tube (3). Heater Al, h.a., energized by a 27.5 V d.c. The experiment
was made at the thermocouple’s position M;. The digitized records are smoothed. The solid line represents
the theoretical best fit to the measured core-tube surface temperature calculated from formula (27).

The values of thermal conductivity and their uncertainties given in table 1 are the averages
and standard deviations calculated from the result of repeated measurements. For the number
of determinations, #, varying from 3 to 21, the standard deviations are 20-40 %, of the averages.
They are certainly large. It may be questioned whether the large uncertainty associated with the
conductivity determination is inherent in the method of measurement presented in this paper.

It must be noted that the thermal conductivity of the lunar simulant soil sample under vacuum,
as reported above, is as low as that of common commercial thermal insulators. This enabled
us to regard the core-tube as a perfect thermal conductor and to use the simplified solution of the
thermal conduction equation for the data analysis. Undoubtedly, however, the large thermal
conductivity contrast between the sample and the core-tube enhanced the difficulty of measure-
ment. For a sample with an exceedingly low thermal conductivity, the core-tube surface tem-
perature may not be controlled sensitively by the sample’s thermal conductivity because the
heat transmitted from the heater to the core-tube does not flow effectively into the sample.
The core-tube surface temperature is controlled more sensitively by the axial heat loss through the
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conductive core-tube. As a consequence, a small error in the temperature measurement would
result in a large difference in the determined value of the sample’s thermal conductivity. The
resolution of the thermal conductivity determination by the present technique is expected to
improve as the sample’s thermal conductivity increases. The best resolution will probably be
obtained when the sample’s thermal conductivity is of the same order of magnitude as that of
the core-tube.

LUNAR CORE SAMPLE MEASUREMENTS

The measurement method thus established was utilized to determine the thermal conductivity
of lunar core samples. So far, measurements have been completed on two Apollo 17 drill core
samples, 70002 and 70006, the two sections of the deep drill string collected from depths of
280-317 cm and 120-160 cm respectively at the Apollo 17 landing site about 40 m north of the
Apollo Lunar Surface Experiment Package’s central station. The length of the standard Apollo
15 type drill core-tube containing sample 70006 is 42.54 cm. However, the core-tube of sample
70002 is only 39.54 cm long because it is the lowest section of the string attached directly to the
drilling bit. The joint length is 2.54 cm of the core-tubes so that the remaining 37.0 cm for sample
70002 and 40.0 cm for sample 70006, shown by X-rays to be completely filled with lunar regolith
material, are suitable for the thermal conductivity measurements.

Asoriginally conceived, it was intended only to make measurements of the thermal conductivity
at one spot near the middle of the core-tube. With the installation of the screw rod and mechanical
feedthrough, it became possible to determine the thermal conductivity at several locations along
the entire length of the core tube. Six thermocouples, labelled respectively L;, L,, M;, M,, U,
and U,, were attached to the core tube, the lowest, L, 11.43 cm from the lower end of the core
tube while the others were separated by 3.81 cm. Four thermocouples, O, O,, O and O,, are
attached to the heater at 5.08, 7.62, 10.16 and 15.24 cm respectively from the upper end of the
heater (see figure 6). As the heater is 20.32cm long, thermocouple Oy is equidistant from the
upper and lower ends of the heater. To determine the thermal conductivity at one of the core-
tube’s thermocouple positions, the heater position is adjusted so that thermocouple Oy is at the
same level as the core-tube’s thermocouple at which the thermal conductivity is to be determined.
For sample 70006, contained in a standard Apollo 15 type drill core-tube, thermal conductivity
determinations were possible at the core-tube thermocouple positions Ly, M;, M, and U,
because, in the present experimental arrangement, the heater cannot be brought to the positions
of thermocouples L, and U,. Because of'its shorter length, the thermal conductivity of core-tube
70002 could only be determined at thermocouples Ly, M; and M,.

To determine the thermal conductivity from the temperature data, the sample’s bulk density
and specific heat must be known. The bulk density values were taken from Mitchell et al. (1973);
namely, 1.74 gcm=3 for sample 70002 and 1.80g cm~2 for sample 70006. No specific heat data
have been reported for Apollo 17 lunar samples. Measurements on various lunar materials
comprising soils, breccias and basalts from other Apollo missions (Hemingway ez al. 1973; Robie
& Hemingway 1971; Robie ¢t al. 1970) showed that the variation of specific heat as a function
of temperature is relatively small from sample to sample. At 300 K, the average specific heat of
four soil samples was 0.765+0.017J g 1K~1, whereas an average of all nine samples was
0.761+ 0.016 J g1 K-L. Since the lunar regolith material consists of a mixture of soil and solid
rock fragments, the latter will be a more appropriate estimate of the lunar regolith specific heat.
Itis reasonable to assume that the specific heat of Apollo 17 lunar core samples is not significantly
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different from that of the lunar materials from preceding missions. The specific heat value of
0.761] g=* K~ was used in the thermal conductivity calculations. In the previous section, we
assumed that the Apollo 12 simulant lunar soil has the same specific heat as the lunar soil, or
0.765] g1 K-1.

TABLE 4. THERMAL CONDUGTIVITY OF TWO APOLLO 17 DRILL CORE SAMPLES,
70002 AND 70006

sample number of
o density, p, (g cm™3) thermocouple  thermal conductivity —measurements,

<1, specific heat, ¢, (Jg~1 K1) position ky/(10-3W m-1K-1) n

— 70006 U, 4.88 +1.46 13

< pr=1.80 M, 4.84 +2.42 10
e ¢, = 0.765 M, 3.87 + 2.66 15
olm L, 4.23+0.51 14
= 70002

MO pr=1.74 M, 3.48+0.43 8
ol ¢, = 0.765 M, 2.02 + 0,34 8
i L, 1.88+0.41 8

In table 4, a summary of the measurement results, the values of the thermal conductivity for
samples 70002 and 70006 are shown to be 1.9-4.9 x 103 W m~1K-1 at around 300 K. They are
intermediate between the thermal conductivity of the lunar regolith as determined iz situ and
that of the lunar soil samples measured in the laboratory, indicating that the discrepancy
between the two types of measurement has not been fully confirmed by the lunar core sample
measurements. It must be inquired why the thermal conductivity of the lunar core samples is
not as high as that of the lunar regolith as determined in situ. It will be necessary to study in
detail the effects of the sampling procedure, in particular any processes which may alter the
intergranular thermal contact of the lunar regolith material, on the thermal conductivity of
lunar core samples. A detailed discussion of the results obtained above, as well as a possible
interpretation of the higher thermal conductivity of the lunar regolith, will be given elsewhere.

PHILOSOPHICAL
TRANSACTIONS
OF

CONCLUSIONS

The new thermal conductivity measurement technique, presented in this paper, can be
applied to any terrestrial or planetary material sampled in a cylindrical container. In our

- application of the method to the lunar core samples, the thermal conductivity was deduced from
< S the temperature data by using the simplified solution (27) in which the thermal conductivity of
S = the container was assumed to be infinite. This assumption is justifiable because the lunar regolith
e g samples were, as shown in table 4, 10~ times less conductive than the core-tube alloy. For the
MO case in which the sample is as conductive as its container, the solution for a finite container
E 9) conductivity can be used to reduce the temperature data. Solution (9), obtained for a constant

heat flux, can be modified easily for a time varying heat flux in the same way as expression (27
was derived from solution (20).

The numerical process employed in the determination of the thermal conductivity becomes
more complicated for the case of a finite container conductivity. As seen from equation (19),
the constants «, appearing in the simplified solution (20) are independent of the sample’s thermal
conductivity, £;. Accordingly, once equation (19) has been solved for e, the same o, can be used
for a different £; to compute the corresponding theoretical core-tube surface temperature, v,,
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provided that the sample’s density, p,, and its specific heat, ¢;, remain unchanged. When the
thermal conductivity of the container is finite, the constants e, in solution (9) are determined
from equation (12), which contains k, parametrically as well as p; and ¢,. Therefore, the constants
a, must be recalculated for each trial of k,.

It is possible, though rather uncommon, for a sample of unknown thermal conductivity to be
contained in a spherical or disk shaped container. The thermal conductivity of these samples
can be determined by the same principle as that applied to the samples in a cylindrical container.
The necessary solutions for the thermal conduction equations for these measurements are given
in the two appendixes of this paper.

ArPENDIX A. DERIVATION OF THE SOLUTION FOR THE THERMAL
CONDUCTION EQUATION OF THE COMPOSITE CIRCULAR CYLINDER

The Laplace transform method, described in detail in Carslaw & Jaeger (1959), was utilized
to solve the thermal conduction equations presented in the text. The outline of the solution
derivation will be given.

Take the Laplace transform of v; and v,,

7 = f : e Py, dt and 7, = f: e Py, di. (A1)
Equations (1) and (2) are converted to the subsidiary equations
(d%/dr2+ (1/r)d/dr—¢3) 5, = 0, (A 2)
(d2/dr2+ (1/r)d/dr—¢3) 7, = O, (A3)
where @ =p/k, and @3 = p/k,, (A4)
and p is the transformed time variable. The subsidiary initial and boundary conditions are
ko (dvp/dr) = —Fo/p, r=0b, (A 5)
Uy=10y 7r=a, (A 6)
ky (doy/dr) = ky(dy/dr), 7= a, (A7)
(doy/dr) =0, r=0. (A 8)

The general solutions of (A 2) and (A 3) are given in terms of the modified Bessel functions.
The solution for (A 2) satisfying (A 8) is

X . 0 = A1 Ly(q:7), (A9)
and the general solution for (A 3) is

Uy = A3 Iy(ga7) + By Ky (qy7). (A 10)

The coefficients 4;, 45, and B, in (A 9) and (A 10) are determined by (A 5), (A 6), and (A 7).
The equation

0 kaqa11(g2b) —k3 92 K1(q50) 4, —Fy/p
Iy(¢,9) —1y(gz2) —Ky(gz9) Al =0 (A 11)
ki qili(g1a) —kaqai(gaa) kago K, (gs0) B, 0
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leads to the solutions
Ay = —Fy[pg.a A(p), (A 12)
Ay = =78 10,0 Kol ) 4= 1(010) Kol (A 13)
pA(p) L A
- F k
By = it (n0) Lgs0) - B0, ) Tas)). (A 19)
wnere Kk = A/ (K1 /Ky) (A 15)
and A(p) = L(¢26) {g1 k1 1, (q1 a) Ko(gaa) + g2 ks In(g1 @) Ky(g2a)}
+Ki(q20) {g1 k1 11(g:1 @) Iy(92 @) — ¢2 K5 Lo(¢4 a) I,(g5a)}. (A 16)
Im A
r

0 4 Re A

Ficure A 1. Path of the contour integration on the complex A-plane.

From #, and #, thus determined, v, and v, are obtained by the inverse Laplace transform

0= f :: M () dd and vy =5 f :j: M ay(A) dA, (A 17)
where 7y (A) = Ay (A) Iy(py7) (A 18)
and Uy(A) = Ay(X) Ip(par) + By(A) Ko(py7). (A 19)
In (A 18) and (A 19) Uy =+ (A/Kky) and gy = J(A/Ky), (A 20)

and by writing 4,(A), 4,(A) and B,(A) we emphasize that in (A 12), (A 13) and (A 14) the
parameter p has been replaced by a complex variable A.

It can be shown that the integrals (A 17) are equivalent to the contour integrals on the complex
A plane along a closed path shown in figure A 1 with y > 0 and the radius of the semicircle I’
tending to infinity. Accordingly the integrals are evaluated by the sum of the residues at the
poles of the integrands enclosed in the contour.
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It is noted that the integrands of the inverse transforms (17) are single value functions of the
complex variable A with a double pole at A = 0and single polesatA = —k; a2 wherea,,s = 1,2, ...

are the positive roots of
A(A) = A(—kya?) =0

for a. An explicit expression of (A 21) is given in (12).
We will first evaluate v;. Rewriting (A 18) as

5, = Ay Iy(pyr) = — Lo Dolmar) _ S (2)

XN g X2D(AY’

we define f(A) = '-Fo%lo(,“ﬂ)a

D Q) = 4(Q) /A%
Then the residue at A = 0 becomes
Res (X 9,),-9 = [(d/dA) {e* f(A) /D (A)}]r=0
- L0, 110D

(o) " 710~ D))"
where, from (A 23), f(0) = —Fy(x}/a),
F1(0) =~ Fy(id/a) (r*/4x),
andfrom (A20)  D(0) = b(eb/ap) {2+ 2 2 ),

D/(0) = dla/ed) [B {325+ 212~ (2-5)]

2,6 a T a

by o) 1 9 2}
+K2{K1 a b)+ 2\a® b alna

Res (€2 9))p=—y,ar = [€*f(2)/(d/dA) {A2D (A)}]am-ry 0

The residue at A = —k; a3 is

= e~K1z?tf( —K aﬁ) gD(O‘s)a

where B(a,) = 1/[(d/d) (2D (A }]A--w
As f(=ry0d) = = Fy(kd/a) J,
we put ¥(a,) = D(ay)/( 2ab/l<2 ,

so that (A 30) becomes

Res (€ U)) pm—ryaz = 2bFg e 193¢ Jy(ror,) W (axy).

An explicit expression for (A 33) is given in (11).
From (A 25) and (A 34) we obtain

el
= Res (X )ieg + 3 Res (7)1t

as explicitly given in (8).

(A 21)

(A 22)

(A 23)

(A 24)

(A 25)

(A 26)
(A 27)

(A 28)

(A 29)

A 30
A 31
A 32
A 33

~ o~ o~
S~ ~—~

(A 34)

(A 35)

The evaluation for v, is similar. With D (A) defined in (A 24), (A 19) can be rewritten as

= Ay(A) In(p27) + By(A) Ko(a7) = g(2) /A2D(A),

(A 36)
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594 K. HORAI AND OTHERS
where gA) = —F, A%[Io(ﬂz ) {o(#y @) Ky(p a) + (ky/xks) I (11 @) Ko(p2a)}
+ Ko(par) {Lo( 1 @) I (1 a) — (ky/ ko) I (pe1a) Iy( 22 @)}]. (A 37)
The residues at A = 0 and A = —«; &2 are, respectively,
Res (€!0,) =9 = [(d/dA) {*g(A) /D (A)}]r=0
_800) (. g(0) D(0)
- b+~ 5 (4 38)
where 2(0) = — Fy(k}/a), (A 39)
g(0) = = Fold/a) |1 +1 S e - il (A 40)
and Res (€ 0g)p=—r a1 = [€g(A)/(d/dA) {A2D(A)}r sy 02
= e—Klz%tg( — K Otg) (b(as)’ (A 41)

where @(a,) has been defined in (A 31).
Since
g(—ry0) = §Fy i a,[y(rr,) (ylace) laxen,) — (ks focks) Jy(acey) Fofawa,)}

— Yo(rxars) {Jo(ace) Jy(axers) — (ki /xks) Jy(acts) Jo(axe,)}], (A 42)
equation (A 41) becomes
Res (€A 7p) pmmy, a3 = 20F, 6124 (Lnkaot,) gy (o) P(r,), (A 43)
with ¥(a,) defined in (A 33) and ,
8i(%) = g(—Ky0B) /(3Fy nai o). (A 44)
We obtain from (A 38) and (A 43),
vy = Res (€4 ,) 100 +s§1 Res (€17,) e, at (A 45)

of which an explicit expression is given in (9).

The solutions of the thermal conduction equations for a composite slab (appendix B) and a
composite sphere (appendix C) are similar to that given above. A brief note will be appropriate
with regard to the derivation of these solutions. By transforming the variables v, and v, in appendix
C to a new set of variables #, and u, with the relations «, = rv; and u, = rv,, the equations
(C1 and C2) become new equations for #; and u, that have the same form as (B1) and (B 2)
appearing in appendix B. The fundamental set of solutions of the subsidiary equations derived
from (B1) and (B2) are hyperbolic sine and cosine functions instead of the modified Bessel
functions that are the basic solutions of (A 2) and (A 3). Also, as a result of the variable trans-
formations, the subsidiary initial and boundary conditions corresponding to (C 3) through (C7)
assume a slightly more complicated form than those derived from (B 3) through (B 7). Except
for these differences, the solution’s derivation is analogous to that outlined in appendix A, and
the results as indicated in appendixes B and C are reached without difficulty.
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ApPENDIX B. CONDUCTION OF HEAT IN THE COMPOSITE SLAB OF ONE MATERIAL
FOR |#| < ¢ AND OF ANOTHER FOR @ < |%| < b; ZERO INITIAL TEMPERATURE;
CONSTANT HEAT FLUX TFy AT x = +b FOR TIME { > 0

Let vy, &y, py, ¢; and k; = k,/p; ¢, be the temperature, thermal conductivity, density, specific
heat and thermal diffusivity in the inner slab |x| < a and vy, £, p, ¢, and &, = k,/p, ¢, the corre-
sponding quantities in the outer slab a < |¥| < & (figure B 1). Since the problem is symmetric
with respect to x = 0, without loss of generality we can restrict the region under discussion to
0 < x < b. The solution in the region —5b < x < 0 will be obtained by changing the sign of
—Fy, a, b and x in the solution for 0 < x < b.

Ficure B 1. Thermal conduction in a composite slab. Inner slab: thickness, 2a; thermal conductivity, ,; density,
p1; specific heat, ¢,; thermal diffusivity, «;. Outer slabs: thickness, b — a; thermal conductivity, k,; density, p,;
specific heat, c,; thermal diffusivity, «,. Initial temperature zero. A constant heat flux F Fy at the outer
boundaries x = + b for time ¢ > 0.

The equations to be solved are

0%, 10dv,
—a;E—I—C_l_a—t_O’ nggﬂ, t>0, (Bl)
0%, 10v,
5}.2_-;;—8?_0, ag<x<b t>0, (B2)
with the conditions kyOvyf0x = —F,, x=1b, t>0, (B 3)
V=0 Xx=a, t>0, (B 4)
ki Ov,/0x = kyO0,/0x, x=a, t>0, _ (B 5)
Oy fox =0, x=0, t>0, ' _ (B 6)
and v, =00<x<a), v,=0@<x<bh), t=0. (B7)
The solutions are:
t+x2/2k
vy =—F I‘C_FZ_'I—'
2La+=2(b—a)
K1 Ky
3 —n)2 2(h — )3
I_&{L+a(b a) }+/L2{a (b a)+(b a) } )
_falbk 2 kel 2Ky by | § e-mattcos aa ¥(a,) (B 8)
kl k2 2 =1 S 8. b
—a+-—=(b—a)
K1 K
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2 — )2 3 — )2 2(h — — )3
t+_a__+/c_1a(x a)+(a x) ﬁ{f_ a(b a)}+k_2=a (b a)+(b a)}
2, ky Ky 2Ky Ky 16K, 2K, Kol 2K, 6k,
v=—F kK N kK 2
Y {—1a+——2(b-—a)}
K1 Ky K1 Ky
- ;_‘, e~*1@3t {cos aa, cos (x — a) ka, ~ (ky /kks) sin aagsin (x —a) ka} Pl |, (B9)

§=1

where k = J(Kl/Kz):

Y(a,) ! =k al [{/—k—la +/2 (b— a)} cos ao, cos (b —a) ko,
Ky Ko
—{ﬁk(b—a)+ﬁa=sinaa sin (b —a) KOL] (B 10)
Kl KK2 t3 S|

and «,, § = 1, 2, ... are the positive roots of
cosaasin (b —a) ka + (ky/kk,y) sin ao cos (b—a) kow = 0 (B 11)
for a, including the common roots, if any, of
sinaa = sin (b—a) ka = 0 (B 12)

and cosaa = cos (b—a) ke = 0 (B 13)
for .

The equations (B12) have common roots if and only if (b—a)«/a is rational. Suppose
(b—a) k/a = m/n, where m and n are positive integers mutually irreducible. Then the common
roots of (B12) are ag = s'nM, s' = 1,2, ... where M = n/a = m/(b—a) «. In the case of both m
and 7 being odd integers, equation (B 13) also has common roots: ag = s"nM,s" = 1,2, .... The
summations with respect to s in (B8) and (B 9) must include the terms corresponding to these
roots when they exist.

APPENDIX C. CONDUCTION OF HEAT IN THE COMPOSITE SPHERE OF ONE MATERIAL
FOR 0 < 7 < @ AND OF ANOTHER FOR a4 € 7 € 0; ZERO INITIAL TEMPERATURE,
CONSTANT HEAT FLUX —F, AT r = b FOR TIME ¢ > 0

Let vy, &y, p1, ¢; and k; = k;/p; ¢; be the temperature, thermal conductivity, density, specific
heat and thermal diffusivity for the inner sphere 0 < 7 < a and vy, £, p,, ¢; and &, = k,/p, ¢, the
corresponding quantities for the outer sphere a < r < b.

The equations to be solved are

o2 ;—a—;—a—a—{=0, Oerd, t>0, (C 1)
0%, 20, 10v,
Tt g% eST<h (>0 @2
with the conditions kyOvyfO0r = —Fy, r=05b, t>0, (C 3)
V=0, r=a, t>0, (C4)
ky Qv /Or = ky Qv /Or, 1 =4a, t>0, (C 5)
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0 for=0, r=0, t>0, (C6)
and 1y =0(0<7r<a), v,=0(a<r<bh), t=0. (C7)

The solutions are

7-2
t+§
v, = —3b%F, L
ks 3+l€—2—(b3—a3)
Ky Ky
k| & a2(b—a)2(2b+a)} ky {az(b a)®+3ah(b—a) 5ab(b a)d+(b—a)®
Al
Kk 110y 6k, Ko 61y 10k,
2
{Zc_las_‘_kﬁ(ba_as)}
Ky Ky
_rl Z e~ tsin ra, Wla,) |, (C 8)
— —a)2(2
ry z_z=6 +( k)a(;Ka)_l_(r a)BK( +r/a)}
vy = — 3b2F), 3! 2 1 2
kl 3+k (b3 a3)
Ky

kl{ a®  a*(b—a)? (26 +a)} s [a2(b—a)® +3a%b(b—a)  5ab(b—a)3+ (b—a)®
e -2 +
1 110k, 6y Kz{ 6Ky 10k,

2

{ﬁau’i? (bs—as)}

Ky Ko

- Z e*1oit {smaoc cos (r—a) ke,
s=1

1k, ky—kysinaay) .
i (k2 cos ac,+ k—zT“s_) sin (r —a) Kacs} Y(a,) |, (C9)

where k = (k;/k,)? as before,

L(ky—ky K k
= 3k, a2|= 1 +-2 i —
Y(o,) ™ = 3k, a2 [K= P + b(b a) + p ab} cos aa,sin (b —a) ko
{kz ko—a kl b+k2 b(b— a)}smaoc cos (b —a) ka,
K02 a /cl Ko

___{sz b (b —a); cos aa,; cos (b —a) ka,
1

A

__;_{/_clwk ~h_k—kbb-a),

kog\ky  Kkpaal Ky a /<2

}smaa sin (b —a) KOCS], (C 10)

and a,, s = 1,2, ... are the positive roots of

sin (b — a) ket[ao cos ac — {1 — (ky/k;) (1 + abk®a?)} sin ao]

] = bkot cos (b —a) ka[aacosaa—{1 — (ky/k,) (b—a)/b}sinaa] (C 11)
or a.
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